An Infinite Dimensional Schur-horn Theorem and Majorization Theory with Applications to Operator Ideals

نویسنده

  • VICTOR KAFTAL
چکیده

The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences ξ and η that converge to 0, there exists a positive compact operator A with eigenvalue list η and diagonal sequence ξ if and only if Pn j=1 ξj ≤ Pn j=1 ηj for every n if and only if ξ = Qη for some orthostochastic matrix Q. When ξ and η are summable, requiring additionally equality of their infinite series obtains the same conclusion, extending a theorem by Arveson and Kadison. Our proof depends on the construction and analysis of an infinite product of T-transform matrices. Further results on majorization for infinite sequences providing “intermediate” sequences generalize known results from the finite case. Majorization properties and invariance under various classes of stochastic matrices are then used to characterize arithmetic mean closed operator ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on the Interplay between Arithmetic Mean Ideals, Traces, Lattices of Operator Ideals, and an Infinite Schur-horn Majorization Theorem

The main result in [24] on the structure of commutators showed that arithmetic means play an important role in the study of operator ideals. In this survey we present the notions of arithmetic mean ideals and arithmetic mean at infinity ideals. Then we explore their connections with commutator spaces, traces, elementary operators, lattice and sublattice structure of ideals, arithmetic mean idea...

متن کامل

Majorization for Infinite Sequences, an Extension of the Schur-horn Theorem, and Operator Ideals

Abstract. The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences ξ and η that converge to 0, there exists a compact operator A with eigenvalue list η and diagonal sequence ξ if and only if Pn j=1 ξj ≤ Pn j=1 ηj for every n if and only if ξ = Qη for some orthostochastic matrix Q. The similar result requiring equ...

متن کامل

An infinite dimensional Schur–Horn Theorem and majorization theory

The main result of this paper is the extension of the Schur–Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences ξ and η that converge to 0, there exists a positive compact operator A with eigenvalue list η and diagonal sequence ξ if and only if ∑n j=1 ξj ∑n j=1 ηj for every n if and only if ξ = Qη for some orthostochastic matrix Q. When ξ and η are summable, requirin...

متن کامل

The Schur-horn Theorem for Operators with Finite Spectrum

We characterize the set of diagonals of the unitary orbit of a self-adjoint operator with a finite spectrum. Our result extends the Schur-Horn theorem from a finite dimensional setting to an infinite dimensional Hilbert space, analogous to Kadison’s theorem for orthogonal projections [17, 18], and the second author’s result for operators with three point spectrum [16].

متن کامل

Application of measures of noncompactness to infinite system of linear equations in sequence spaces

G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009